next up previous
Next: Differential Equations Up: Functions of 2 or Previous: Finite Changes in Many

Implicit Functions

Along a contour of constant p, when T=f(V) or V=g(T) so that the locus of acceptable V and T results in p staying constant, i.e., P(T,V) = C,

\begin{displaymath}\Delta p = p(T+\Delta T, V+\Delta V) - p(T,V) =
\left (\frac...
... T
+\left (\frac{\partial P}{\partial V}\right )_T\Delta V = 0
\end{displaymath}

since p is constant. Then,

\begin{displaymath}\left (\frac{\partial P}{\partial T}\right )_V\frac{\Delta T}{\Delta V}
= - \left (\frac{\partial P}{\partial V}\right )_T
\end{displaymath}

so

\begin{displaymath}\left (\frac{\partial T}{\partial V} \right )_p = -
\frac{\le...
...V}\right )_T}
{\left (\frac{\partial P}{\partial T}\right )_V}
\end{displaymath}

after algebraic manipulations and appropriate limit taking.


1998-05-11